head JofIMAB
Journal of IMAB
Publisher: Peytchinski Publishing Ltd.
ISSN: 1312-773X (Online)
Issue: 2024, vol. 30, issue4
Subject Area: Medicine
-
DOI: 10.5272/jimab.2024304.5779
Published online: 02 October 2024

Reviw article
J of IMAB. 2024 Oct-Dec;30(4):5779-5785
PROTECTIVE EFFECTS OF ANTIOXIDANTS AGAINST BURN-RELATED INJURIES
Minka HristovaORCID logoCorresponding Autoremail,
Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University-Varna, Bulgaria.

ABSTRACT:
Thermal burn injuries are still a serious public health concern. Severe burns cause both local skin and distant-organ injuries. Many pathological mechanisms are involved in burn-induced injuries. Overproduction of reactive oxygen species (ROS) and oxidative stress play key roles in the pathogenesis of the systemic response and serious complications after burns. Antioxidants are intensively studied, and their beneficial effects are documented. Regardless of that, they still attract the researchers' interest in uncovering new evidence about their favorable impact on burn injuries. This review aims to describe recent evidence related to the mechanisms of tissue protection after administering some antioxidants with biogenic origins in burns.

Keywords: burn injury, reactive oxygen species (ROS), oxidative stress, antioxidants,

pdf - Download FULL TEXT /PDF 2285 KB/
Please cite this article as: Hristova M. Protective effects of antioxidants against burn-related injuries. J of IMAB. 2024 Oct-Dec;30(4):5779-5785. [Crossref - 10.5272/jimab.2024304.5779]

Corresponding AutorCorrespondence to: Minka Hristova, Department of Physiology and Pathophysiology, Medical University-Varna; 55, Marin Drinov Str., Varna 9002, Bulgaria; E-mail: hristova_minka@mu-varna.bg

REFERENCES:
1. Burns. In: Fact sheet. WHO. 13 October 2023. [Internet]
2. Evers LH, Bhavsar D, Mailänder P. The biology of burn injury. Exp Dermatol. 2010 Sep;19(9):777-83. [PubMed]
3. Plichta JK, Droho S, Curtis BJ, Patel P, Gamelli RL, Radek KA. Local burn injury impairs epithelial permeability and antimicrobial peptide barrier function in distal unburned skin. Crit Care Med. 2014 Jun;42(6):e420-31. [PubMed]
4. Thompson MA, Zuniga K, Sousse L, Christy R, Gurney CJ. The Role of Vitamin E in Thermal Burn Injuries, Infection, and Sepsis: A Review. J Burn Care Res. 2022 Nov 2;43(6):1260-1270. [PubMed]
5. Agay D, Andriollo-Sanchez M, Claeyssen R, Touvard L, Denis J, Roussel AM, et al. Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur Cytokine Netw. 2008 Mar;19(1):1-7. [PubMed]
6. Parihar A, Parihar MS, Milner S, Bhat S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns. 2008 Feb;34(1):6-17. [PubMed]
7. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev. 2016;2016:1245049. [PubMed]
8. Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Oxid Med Cell Longev. 2016;2016:6719534. [PubMed]
9. Rehou S, Shahrokhi S, Natanson R, Stanojcic M, Jeschke MG. Antioxidant and Trace Element Supplementation Reduce the Inflammatory Response in Critically Ill Burn Patients. J Burn Care Res. 2018 Jan 1;39(1):1-9. [PubMed]
10. Sahib AS, Al-Jawad FH, Alkaisy AA. Effect of antioxidants on the incidence of wound infection in burn patients. Ann Burns Fire Disasters. 2010 Dec 31;23(4):199-205. [PubMed]
11. Kiselova Y, Ivanova D, Chervenkov T, Gerova D, Galunska B, Yankova T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother Res. 2006 Nov;20(11):961-5. [PubMed]
12. Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials (Basel). 2021 Jul 25;14(15):4135. [PubMed]
13. Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006 Mar;58(1):87-114. [PubMed]
14. Jacob S, Herndon DN, Hawkins HK, Enkhbaatar P, Cox RA. Xanthine oxidase contributes to sustained airway epithelial oxidative stress after scald burn. Int J Burns Trauma. 2017 Oct 25;7(6):98-106. [PubMed]
15. Zhou H, Fang Q, Li N, Yu M, Chen H, Guo S. ASMq protects against early burn wound progression in rats by alleviating oxidative stress and secondary mitochondria‑associated apoptosis via the Erk/p90RSK/Bad pathway. Mol Med Rep. 2021 May;23(5):390. [PubMed]
16. Till GO, Guilds LS, Mahrougui M, Friedl HP, Trentz O, Ward PA. Role of xanthine oxidase in thermal injury of skin. Am J Pathol. 1989 Jul;135(1):195-202. [PubMed]
17. Tarafdar A, Pula G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci. 2018 Nov 30;19(12):3824. [PubMed]
18. Joly J, Hudik E, Lecart S, Roos D, Verkuijlen P, Wrona D, et al. Membrane Dynamics and Organization of the Phagocyte NADPH Oxidase in PLB-985 Cells. Front Cell Dev Biol. 2020 Nov 12;8:608600. [PubMed]
19. Chen Y, Junger WG. Measurement of oxidative burst in neutrophils. Methods Mol Biol. 2012;844:115-24. [PubMed]
20. Granger DN, Seifert H, Senchenkova E. Intestinal Ischemia and Reperfusion: Consequences and Mechanisms. In: PanVascular Medicine. Lanzer, P. (eds). Springer, Berlin, Heidelberg. Feb 2015. [Crossref]
21. Cai W, Shen K, Ji P, Jia Y, Han S, Zhang W, et al. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species. Burns Trauma. 2022 Apr 12;10:tkac008. [PubMed]
22. Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front Physiol. 2021 Apr 23;12:627837. [PubMed]
23. Zang Q, Maass DL, White J, Horton JW. Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy. J Appl Physiol (1985). 2007 Jan;102(1):103-12. [PubMed]
24. Liu X, Xie X, Li D, Liu Z, Zhang B, Zang Y, et al. Sirt3-dependent regulation of mitochondrial oxidative stress and apoptosis contributes to the dysfunction of pancreatic islets after severe burns. Free Radic Biol Med. 2023 Mar;198:59-67. [PubMed]
25. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th edn. Oxford University Press. 1 August 2015. [Crossref]
26. Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem. 2011;18(25):3871-88. [PubMed]
27. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016 Dec 29;5:e47. [PubMed]
28. Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, et al. Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxid Med Cell Longev. 2019 Nov 11;2019:3849692. [PubMed]
29. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 2006 Mar;69(3):443-9. [PubMed]
30. Si P, Zhu C. Biological and neurological activities of Astaxanthin (Review). Mol Med Rep. 2022 Oct;26(4):300. [PubMed]
31. Azam M, Ghufran H, Butt H, Mehmood A, Ashfaq R, Ilyas AM, et al. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Burns Trauma. 2021 Sep 11;9:tkab021. [PubMed]
32. Alyoussef A, El-Gogary RI, Nasr M, Ahmed RF, Ahmed Farid OAH, Bakeer M. The beneficial activity of Curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol. 2021 Apr;62: 102360. [Crossref]
33. Ozcan O, Ipekci H, Alev B, Ustundag UV, Sen A, Emekli-Alturfan E, et al. The effect of Myrtus communis L. ethanol extract on the small intestine and lungs in experimental thermal burn injury. J Therm Biol. 2020 Oct;93:102685. [PubMed]
34. Guo S, Guo L, Fang Q, Yu M, Zhang L, You C, et al. Astaxanthin protects against early acute kidney injury in severely burned rats by inactivating the TLR4/MyD88/NF-κB axis and upregulating heme oxygenase-1. Sci Rep. 2021 Mar 23;11(1):6679. [PubMed]
35. Koçman AE, Seçer M, Tanrıkut C, Arık D, Üstüner M, Çetin C. The Effect of Astaxanthin on Smoke Inhalation Injury on Rats: Experimental Study. Osmangazi Tıp Dergisi. 2022; 44(3):367-375. [Crossref]  

Received: 19 March 2024
Published online: 02 October 2024

back to Online Journal