head JofIMAB
Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski Publishing Ltd.
ISSN: 1312-773X (Online)
Issue: 2022, vol. 28, issue4
Subject Area: Dental Medicine
DOI: 10.5272/jimab.2022284.4612
Published online: 12 October 2022

Review article
J of IMAB. 2022 Oct-Dec;28(4):4612-4617
Desislava Tsanova-ToshevaORCID logo Corresponding Autoremail, Ivanka DimitrovaORCID logo,
Department of Conservative Dentistry, Faculty of Dental medicine, Medical University - Sofia, Bulgaria.

Calcium silicate cements are widely used in contemporary dentistry. Their properties, such as biocompatibility, osteoinductive potential, and stimulation of pulp regeneration, are valuable for the treatment of perforations, pulp capping procedures, retrograde fillings, etc. This article aims to present the new calcium silicate cements available on the market, review the recent modifications in their composition, describe the evolution of each generation of these materials, and reveal how these changes impact their different properties and improve their characteristics.At the same time, this paper makes a brief retrospection of the first calcium silicate-based cements, which started the era of contemporary mineral trioxide aggregate materials. This article also points out some future tendencies in the development of calcium silicate cements and attempts to differentiate their generations mentioned in the literature.

Keywords: Calcium silicate cements, Mineral trioxide aggregate, New dental materials,

pdf - Download FULL TEXT /PDF 525 KB/
Please cite this article as: Tsanova-Tosheva D, Dimitrova I. Major Changes in The Development of Calcium Silicate-based Cements in Dentistry. J of IMAB. 2022 Oct-Dec;28(4):4612-4617.
DOI: 10.5272/jimab.2022284.4612

Corresponding AutorCorrespondence to: Assist. Prof. Dr Desislava Milcheva Tsanova-Tosheva, Department of Conservative Dentistry, Faculty of Dental Medicine, Medical University- Sofia; 1, St. G. Sofiisky Blvd., 1431, Sofia, Bulgaria; E-mail: desitadental@abv.bg

1. Lovschall H, Kjaergaard P, Thorsen J. Mineral Trioxide Aggregate (MTA). US 2012/0156308A1. Jun. 21, 2012. [Internet]
2. de Oliveira NG, de Souza Araújo PR, da Silveira MT, Sobral APV, Carvalho MV. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: Systematic review. Eur J Dent. 2018 Apr-Jun;12(2):317-326. [PubMed]
3. Dutta A, Saunders WP. Calcium silicate materials in endodontics. Dent Update. 2014 Oct 1;41(8):708-22. [Crossref]
4. Chang SW. Chemical Composition and Porosity Characteristics of Various Calcium Silicate-Based Endodontic Cements. Bioinorg Chem Appl. 2018 Feb 1;2018:2784632. [PubMed]
5.  Bozeman TB, Lemon RR, Eleazer PD. Elemental Analysis of Crystal Precipitate from Gray and White MTA. J Endod. 2006 May;32(5):425-8. [PubMed]
6.  Duque JA, Fernandes SL, Bubola JP, Duarte MAH, Camilleri J, Marciano MA. The effect of mixing method on tricalcium silicate-based cement. Int Endod J. 2018 Jan 1;51(1):69-78. [PubMed]
7. Zafar K, Jamal S, Ghafoor R. Bio-active cements-Mineral Trioxide Aggregate based calcium silicate materials: a narrative review. J Pak Med Assoc. 2020 Mar;70(3):497-504. [PubMed]
8. Altan H, Tosun G. The setting mechanism of mineral trioxide aggregate. J Istanb Univ Fac Dent. 2016 Jan 12;50(1):65-72. [PubMed]
9. Camilleri J. The physical properties of accelerated Portland cement for endodontic use. Int Endod J. 2008 Feb;41(2):151–7. [PubMed]
10. Jiménez-Sánchez MC, Segura-Egea JJ, Díaz-Cuenca A. A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials (Basel). 2020 Apr 2;13(7):1641. [PubMed]
11.  Borges RP, Sousa-Neto MD, Versiani MA, Rached-Júnior FA, De-Deus G, Miranda CES, et al. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J. 2012 May;45(5):419-28. [PubMed]
12.  Borges AH, Pedro FLM, Semanoff-Segundo A, Miranda CES, Pécora JD, Cruz Filho AM. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system. J Appl Oral Sci. 2011 May-Jun;19(3):228–32. [PubMed]
13.  Jafari F, Jafari S. Importance and methodologies of endodontic microleakage studies: A systematic review. J Clin Exp Dent. 2017 Jun;9(6):e812–9. [PubMed]
14.  Gonçalves JL, Viapiana R, Miranda CES, Borges BH, da Cruz Filho AM. Evaluation of physico-chemical properties of Portland cements and MTA. Braz Oral Res. 2010 Jul;24(3):277–83. [PubMed]
15. Cosme-Silva L, Gomes-Filho JE, Benetti F, Dal-Fabbro R, Sakai VT, Cintra LTA, et al. Biocompatibility and immunohistochemical evaluation of a new calcium silicate‐based cement, Bio‐C Pulpo. Int Endod J. 2019 May 3;52(5):689-700. [PubMed]
16. Silva EJ, Carvalho NK, Zanon M, Senna PM, DE-Deus G, Zuolo ML, et al. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Braz Oral Res. 2016 Jun 14;30(1):S1806-83242016000100269. [PubMed]
17. Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Tanomaru Filho M, de Moraes IG. Radiopacity of Portland Cement Associated With Different Radiopacifying Agents. J Endod. 2009 May;35(5):737-40. [PubMed]
18. Guimarães BM, Vivan RR, Piazza B, Alcalde MP, Bramante CM, Duarte MAH. Chemical-physical Properties and Apatite-forming Ability of Mineral Trioxide Aggregate Flow. J Endod. 2017 Oct 1;43(10):1692–6. [PubMed]
19. Savitri D, Suprastiwi E, Margono A. Applying glass ionomer cement to MTA flowTM and biodentineTM and its effects on the interface layer. J Phys: Conference Series. 2017 Aug 30;884(1):012109. [Crossref]
20. Sinkar RC, Patil SS, Jogad NP, Gade VJ. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: An ultraviolet spectrophotometric analysis. J Conserv Dent. 2015 Nov 1;18(6):445–8. [PubMed]
21. Walsh RM, Woodmansey KF, He J, Svoboda KK, Primus CM, Opperman LA. Histology of NeoMTA Plus and Quick-Set2 in Contact with Pulp and Periradicular Tissues in a Canine Model. J Endod. 2018 Sep 1;44(9):1389–95. [PubMed]
22. Rajasekharan S, Vercruysse C, Martens L, Verbeeck R. Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials (Basel). 2018 Jan 13;11(1):123. [PubMed]
23 Khalil I, Naaman A, Camilleri J. Investigation of a novel mechanically mixed mineral trioxide aggregate (MM-MTATM). Int Endod J. 2015 Aug 1;48(8):757–67. [PubMed]
24. Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod. 2013 Apr;39(4):478–83. [PubMed]
25. Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. J Clin Diagn Res. 2017 Aug;11(8):ZG01-ZG05. [PubMed]
26.  Dawood AE, Manton DJ, Parashos P, Wong RHK, Palamara JEA, Stanton DP, et al. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. Aust Dent J. 2015 Dec 1;60(4):434–44. [PubMed]
27. Kumari S, Mittal A, Dadu S, Dhaundiyal A, Abraham A, Yendrembam B.  Comparative evaluation of physical and chemical properties of calcium silicate-based root-end filling materials (Mineral trioxide aggregate and biodentine): An in vitro study. Indian J Dent Sci. 2018 Dec;10(4):197-202. [Crossref]
28. Aksoy S, Ünal M. Shear bond strength of universal adhesive systems to a bioactive dentin substitute (Biodentine®) at different time intervals. Stomatol Dis Sci. 2017; 1:116-22. [Crossref]
29. Kouzmanova Y, Dimitrova I. Solubility of Calcium Silicate Based Cements – a Comparative Study. Acta Medica Bulg. 2020 Jul 1;47(2):27-9. [Crossref]
30. Bakhtiar H, Aminishakib P, Ellini MR, Mosavi F, Abedi F, Esmailian S, et al. Dental Pulp Response to RetroMTA after Partial Pulpotomy in Permanent Human Teeth. J Endod. 2018 Nov 1;44(11):1692–6. [PubMed]
31. Lim M, Yoo S. The antibacterial activity of mineral trioxide aggregate containing calcium fluoride. J Dent Sci. 2022 Apr;17(2):836-841. [PubMed]
32.  Lee M, Kang CM, Song JS, Shin YS, Kim SY, Kim SO, et al. Biological efficacy of two mineral trioxide aggregate (Mta)-based materials in a canine model of pulpotomy. Dent Mater J. 2017;36(1):41–7. [PubMed]
33.  Cantekin K. Bond strength of different restorative materials to light-curable mineral trioxide aggregate. J Clin Pediatr Dent. 2015 Dec 1;39(2):143–8. [PubMed]
34.  Erfanparast L, Iranparvar P, Vafaei A. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomized clinical trial. Eur Arch Paediatr Dent. 2018 Jun 1;19(3):197-203. [PubMed]
35.  Ghilotti J, Sanz JL, López-García S, Guerrero-Gironés J, Pecci-Lloret MP, Lozano A, et al. Comparative surface morphology, chemical composition, and cytocompatibility of Bio-C repair, biodentine, and proroot MTA on hDPCs.  Materials (Basel). 2020 May 10;13(9):2189. [PubMed]
36. Camilleri J. Classification of Hydraulic Cements Used in Dentistry. Front Dent Med. 2020 Sep;1:art 9. [Crossref]
37. Guggenberger R, May R, Stefan KP. New trends in glass-ionomer chemistry. Biomaterials. 1998 Mar;19(6):479-83. [PubMed]

Received: 07 February 2022
Published online: 12 October 2022

back to Online Journal