head JofIMAB
Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski Publishing Ltd.
ISSN: 1312-773X (Online)
Issue: 2020, vol. 26, issue1
Subject Area: Medicine
DOI: 10.5272/jimab.2020261.2875
Published online: 22 January 2020

Original article

J of IMAB. 2020 Jan-Mar;26(1):2875-2882;
Sevginar Ibryamova1ORCID logo, Nina Arhangelova2ORCID logo, Teodora Koynova1ORCID logo, Dimitar Dimitrov1ORCID logo, Zheni Dimitrova1ORCID logo, Radoslav Ivanov1ORCID logo, Karamphil Kalchev1ORCID logo, Nescho Chipev1ORCID logo, Nikolay Natchev1ORCID logo, Tsveteslava Ignatova-Ivanova1ORCID logo Corresponding Autoremail,
1) Department of Biology, Shumen University, Shumen, Bulgaria.
2) Department of Physics and Astronomy, Shumen University, Shumen, Bulgaria.

In the present study we present the results from antifungal activity of Lactic Acid Bacteria, isolated from M. galloprovincialis Lam. from the Bulgarian Black Sea aquatory. The Black Sea mussel (M. galloprovincialis Lam.) is in fact the only marine species grown as aquaculture in the Bulgarian section of the Black Sea. The mussels have an exceptional nutritional value, making them highly suitable for the human diet. The cultivation of sea products, in particular the Black Sea clam, is becoming an important part of the Western Black Sea industry. With increasing of the tourist pressure and the construction activities on the Black Sea coast, maritime pollution increased in the last decades. The pollutants include various pathogenic microorganisms - Escherichia coli, Staphylococcus aureus, Salmonella thyphimurium, Hymeniacidon perlevis, incl. the cholera cause (Vibrioo cholera). Such pathogenic microorganisms are often present in the mussels and can cause the spread of various diseases. In this study 2 isolates Lactic acid bacteria, from M. galloprovincialis Lam have been identified as Lactobacillus sp. and characterized as cultures with promising antifungal activity. The antifungal activity of our new isolates Lactobacillus sp. lineages, seems to be a promising advantage, suggesting their potential applications in different food technologies.

Keywords: Bivalvia, Mytilus galloprovincialis Lam, probiotic bacteria, pathogens, Black Sea,

pdf - Download FULL TEXT /PDF 7401 KB/
Please cite this article as: Ibryamova S, Arhangelova N, Koynova T, Dimitrov D, Dimitrova Z, Ivanov R, Kalchev K, Chipev N, Natchev N, Ignatova-Ivanova T. Antifungal Activity of Lactic Acid Bacteria, Isolated from (Mytilus galloprovincialis Lam.) in The Bulgarian Black Sea aquatory. J of IMAB. 2020 Jan-Mar;26(1):2875-2882. DOI: 10.5272/jimab.2020261.2875

Corresponding AutorCorrespondence to: Tsveteslava Ignatova-Ivanova, Department of Biology, Shumen University “Konstantin Preslavski”; 115, Universitetska Str., Shumen, Bulgaria; E-mail: ts.ignatovaivanova@shu.bg

1. Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL. The role of probiotics in aquaculture. Vet Microbiol. 2006 May 31;114(3-4):173-86. [PubMed] [Crossref]
2. Šolić M, Krstulović N, Jozić S, Curać D. The rate of concentration of faecal coliforms in shellfish under different environmental conditions. Environment International. 1999 Dec;25(8):991-1000. [Crossref]
3. Vernocchi P, Maffei M, Lanciotti R, Suzzi G, Gardini F. Characterization of Mediterranean mussels (Mytilus galloprovincialis) harvested in Adriatic Sea (Italy). Food Control. 2007 Dec;18(12):1575-1583. [Crossref]
4. Khouadja S,  Haddaji N,  Hanchi M,  Bakhrouf A. Selection of lactic acid bacteria as candidate probiotics for Vibrio parahaemolyticus depuration in pacific oysters (Crassostrea gigas). Aquaculture Research. 2017 Apr;48(4):1885-1894 [Crossref]
5. Françoise L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 2010 Sep;27(6):698-709. [Crossref]
6. Falanga A, Lombardi L, Franci G, Vitiello M, Iovene MR, Morelli G, et al. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria. Int J Mol Sci. 2016 May 21;17(5) pii: E785. [PubMed] [Crossref]
7. Luz C, Saladino F, Luciano FB, Mañes J, Meca G. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology. 2017 Aug;81:128-135. [Crossref]
8. Cizeikiene D, Juodeikiene G, Paskevicius A, Bartkiene E. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control. 2013 Jun; 31(2):539-545. [Crossref]
9. Mauch A, Dal Bello F, Coffey A, Arendt EK. The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol. 2010 Jun 30;141(1-2):116-21. [PubMed] [Crossref]
10. Stoianova LG, Ustiugova EA, Netrusov AI. [Antibacterial metabolites of lactic acid bacteria: their diversity and properties]. [in Russian] Prikl Biokhim Mikrobiol. 2012 May-Jun;48(3):259-75. [PubMed] [Crossref]
11. Hugenholtz J. Traditional biotechnology for new foods and beverages. Curr Opin Biotechnol. 2013 Apr;24(2):155-9. [PubMed] [Crossref]
12. Peyer LC, Axel C, Lynch KM, Zannini E, Jacob F, Arendt EK. Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control. 2016 Nov;69:227-236. [Crossref]
13. Laitila A, Alakomi HL, Raaska L, Mattila-Sandholm T, Haikara A. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J Appl Microbiol. 2002; 93(4):566-76. [PubMed] [Crossref]
14. Mason AJ, Moussaoui W, Abdelrahman T, Boukhari A, Bertani P, Marquette A, et al. Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides. J Biol Chem. 2009 Jan 2;284(1):119-33. [PubMed] [Crossref]
15. Nwamaioha NO, Ibrahim SA. A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci. 2018 Jun;101(6):4953-4961. [PubMed] [Crossref]
16. Muhialdin BJ, Hassan Z, Saari N. Chapter 6: Lactic Acid Bacteria in Biopreservation and the Enhancement of the Functional Quality of Bread. In Book: Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes.  INTECH. 2015. pp:155-172.
17. Hassan YI, Zhou T, BullermanLB. Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. Food Sci Tech Int. 2015 Jan;22(1):79-90. [Crossref]
18. Ryan LA, Dal Bello F, Arendt EK. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol. 2008 Jul 31;125(3):274-8. [PubMed] [Crossref]
19. Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst Appl Microbiol. 2009 Sep;32(6):438-48. [PubMed] [Crossref]
20. Ahmad Rather I, Seo BJ, Rejish Kumar VJ, Choi UH, Choi KH, Lim JH, et al. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett Appl Microbiol. 2013 Jul;57(1):69-76. [PubMed] [Crossref]
21. Gupta R, Srivastava S. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol. 2014 Sep;42:1-7. [PubMed] [Crossref]
22. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol. 2000 Sep;66(9):4084-90. [PubMed] [Crossref]
23. Saenz de Rodriguez MA, Diaz-Rosales P, Chabrillon M, Smidt H, Arijo S, Leon-Rubio JM. Effect of dietary administration of probiotics on growth and intestine functionally of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac Nutr. 2009 Apr;15(2):177-85.  [Crossref]
24. Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 2002 Sep;68(9):4322-7. [PubMed] [Crossref]
25. Addis E, Fleet GH, Cox JM, Kolak D, Leung T. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol. 2001 Sep;69(1-2):25-36. [PubMed] [Crossref]
26. Durlu-Ozkaya F, Karabicak N, Kayali R, Essen B. Inhibition of yeasts isolated from traditional Turkish cheeses by Lactobacillus spp. Int J Dairy Technol. 2005 May;58(2):111-114.[Crossref]
27. Antimicrobial resistance. WHO. 15 February 2018. [Internet]
28. Khouadja S, Haddaji N, Hanchi M, Bakhrouf A. Selection of lactic acid bacteria as candidate probiotics for Vibrio parahaemolyticus depuration in pacific oysters (Crassostrea gigas). Aquaculture Research. 2017 Apr;48(4):1885-1894. [Crossref]
29. Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut. 2018 Jun;237:675-684. [PubMed] [Crossref]
30. Moriarty DJW. Disease control in shrimp aquaculture with probiotic bacteria. In: Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Bell CR, Brylinsky M, Johnson-Green P (eds). Atlantic Canada Society for Microbial Ecology, Halifax, Canada, 1999. [Internet]
31. Al-Dohail MA,  Hashim R, Aliyu-Paiko M. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquac Res. 2009 Sep;40(14):1642-52. [Crossref].

Received: 17 October 2019
Published online: 22 January 2020

back to Online Journal