head JofIMAB
Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski Publishing
ISSN: 1312-773X (Online)
Issue: 2017, vol. 23, issue 4
Subject Area: Medicine
-
DOI: 10.5272/jimab.2017234.1828
Published online: 18 December 2017

Original article

J of IMAB 2017 Oct-Dec;23(4):1828-1833
ANTIMICROBIAL SUSCEPTIBILITY OF CLINICALLY SIGNIFICANT ISOLATES OF ENTEROBACTER SPP., OBTAINED FROM PATIENTS, HOSPITALISED IN VARNA UNIVERSITY HOSPITAL DURING THE PERIOD 2014 – 2016
Dobromira Dimitrova1ORCID logo, Temenuga Stoeva1ORCID logo Corresponding Autoremail, Rumyana Markovska2ORCID logo, Petya Stankova2ORCID logo, Milena Bozhkova1ORCID logo, Gergana Nedelcheva1ORCID logo, Ivan Mitov2ORCID logo,
1) Department of Microbiology and Virology, Medical University, Varna, Bulgaria.
2) Department of Medical Microbiology, Medical University, Sofia, Bulgaria.

ABSTRACT:
Purpose: Rapidly increasing antimicrobial resistance in medically important bacterial species from family Enterobacteriaceae is one of the most significant microbiological, clinical and epidemiological issues of modern medicine. The aim of this study is to investigate the antibiotic susceptibility of clinically significant isolates of Enterobacter spp., obtained from patients, hospitalized in University Hospital “Saint Marina” – Varna during the period 2014 – 2016.
Material and methods: a total of 433 clinical isolates of Enterobacter spp.from blood cultures, urine and wound secretions were studied. The species identification was made by conventional, semi-automated (Crystal, BD) and automated systems (Phoenix, BD). The susceptibility to piperacillin/tazobactam (TZP), ceftazidime (CAZ), meropenem (MEM), gentamicin (Gm), amikacin (Ak), ciprofloxacin (CIP), levofloxacin (LVX), trimethoprime/sulfamethoxazole (SXT) and tetracycline (Tet) was tested by disc-diffusion method and / or automated system Phoenix 100, BD. The results were interpreted according to EUCAST 2016 guidelines.
Results: The resistance in the studied collection of isolates, shown in increasing order is as follows: Аk, 4.2% <LVF, 25.4% <TZP, 37.4% <Tet, 38.7% <SXT, 40% <CIP, 44.1% <Gm, 49.7% <CAZ, 57%. Meropenem demonstrated fully preserved activity. In the group of CAZ resistant isolates, the levels of antimicrobial resistance are: Аk, 5.7% <LVF, 42.9% <Tеt, 52.4% <SXT, 60.3% <TZP, 64.4% <CIP, 84.6% <Gm, 86.2%. The rate of CAZ resistant Enterobacter spp. was 66.9% among the urine isolates, 61.9% - among those from blood culture and 46.3% - in the group of isolates from wound secretions. In the three mentioned groups of isolates, the lowest level of resistance was detected to Ak (1.6%; 4%; 6.9%). The isolates from wound and blood cultures demonstrated the highest level of resistance to Gm (60.3%, 42.9%) and the urine isolates – to Тet (60%) and CIP (56.9%).
Conclusions: CAZ resistant Enterobacter spp. demonstrated significantly higher levels of resistance in comparison to the whole studied group especially to quinolones and aminoglycosides. The highest level of CAZ resistant Enterobacter spp.  was detected in the group of urine isolates.

Keywords: Enterobacter spp., antimicrobial susceptibility, resistance,

pdf - Download FULL TEXT /PDF 1146 KB/
Please cite this article in PubMed Style or AMA (American Medical Association) Style:
Dimitrova D, Stoeva T, Markovska R, Stankova P, Bozhkova M, Nedelcheva G, Mitov I. Antimicrobial susceptibility of clinically significant isolates of Enterobacter spp., obtained from patients, hospitalised in Varna University Hospital during the period 2014 – 2016. J of IMAB. 2017 Oct-Dec;23(4):1828-1833. DOI: 10.5272/jimab.2017234.1828

Corresponding AutorCorrespondence to: Assoc. Prof. Temenuga Stoeva, MD, PhD, Department of Microbiology and Virology, Medical University, Varna; 55, Marin Drinov Str., Varna, Bulgaria; E-mail: temenuga.stoeva@abv.bg

REFERENCES:
1. Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotical resistance. Future Microbiol. 2012 Jul;7(7):887-902. [PubMed] [CrossRef]
2. Sanders WE Jr, Sanders CC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev. 1997 Apr;10(2):220-41. [PubMed]
3. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2009 Apr;197(8):1079-81. [PubMed] [CrossRef]
4. Davin-Regli A, Pagès JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015 May 18;6:392. [PubMed] [CrossRef]
5. Jacoby GA. AmpC β-Lactamases. Clin Microbiol Rev. 2009 Jan; 22 (1):161-82. [PubMed] [CrossRef]
6. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a Clinical Update. Clin Microbiol Rev. 2005 Oct;18(4):657-86. [PubMed] [CrossRef]
7. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010 Sep;2(3):263-74. [PubMed] [CrossRef]
8. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-Mediated Quinolone Resistance: a Multifaceted Threat. Clin Microbiol Rev. 2009 Oct;22(4):664-89. [PubMed] [CrossRef]
9. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr. 2014; 2(2). [PubMed] [CrossRef]
10. Rosii F, Baquero F, Hsueh PR, Paterson DL, Bochicchio GV, Snyder TA, et al. In vitro susceptibilities of aerobic and facultatively anaerobic Gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: 2004 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). J Antimicrob Chemother. 2006 Jul;58(1):205-10. [PubMed]
11. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. [Internet]
12. Xie J, Peters BM, Li B, Li L, Yu G, Xu Z, et al. Clinical features and antimicrobial resistance profiles of important Enterobacteriaceae pathogens in Guangzhou representative of Southern China, 2001-2015. Microb Pathog. 2017 Jun;107:206-211. [PubMed] [CrossRef]
13. Maraki S, Vardakas KZ, Samonis G, Perdikis D, Mavromanolaki VE, Kofteridis DP, et al. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece. Future Microbiol. 2017 Jun;12:683-93. [PubMed]
14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268-81. [PubMed] [CrossRef]
15. Markovska RD, Stoeva TJ, Bojkova KD, Mitov IG. Epidemiology and Molecular Characterization of Extended-Spectrum Beta-Lactamase-Producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens Isolates from a Bulgarian Hospital. Microbial Drug Resist. 2014 Apr;20(2):131-7. [PubMed] [CrossRef]
16. Carattoli A. Resistance Plasmid Families in Enterobacteriaceae. Antimicrob Agents Chemoth. 2009 Jun;53(6):2227-38. [PubMed] [CrossRef]
17. Carattoli A. Plasmids in Gram negatives: Molecular typing of resistance plasmids. Int J Med Microbiol. 2011 Dec;301(8):654-8. [PubMed] [CrossRef]
18. Chmelnitsky I, Navon-Venezia S, Strahilevitz J, Carmeli Y. Plasmid-mediated qnrB2 and carbapenemase gene bla(KPC-2) carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob Agents Chemother. 2008 Aug;52(8):2962-5. [PubMed] [CrossRef]
19. Fernández J, Montero I, Martínez Ó, Fleites A, Poirel L, Nordmann P, et al. Dissemination of multiresistant Enterobacter cloacae isolates producing OXA-48 and CTX-M-15 in a Spanish hospital. Int J Antimicrob Agents. 2015 Oct;46(4):469-74. [PubMed] [CrossRef]
20. Miro E, Segura C, Navarro F, Sorlı L, Coll P, Horcajada JP, et al. Spread of plasmids containing the blaVIM-1 and blaCTX-M genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates. J Antimicrob Chemother. 2010 Apr;65(4):661-65. [PubMed] [CrossRef]
21. Nilsen Е, Haldorsen BC, Sundsfjord A, Simonsen GS, Ingebretsen A, Naseer U, et al. Large IncHI2-plasmids encode extended-spectrum b-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clin Microbiol Infect. 2013 Nov;19(11):E516-8. [PubMed] [CrossRef]
22. Potron A, Poirel L, Bernabeu S, Monnet X, Richard C, Nordmann P. Nosocomial spread of ESBL-positive Enterobacter cloacae co-expressing plasmid-mediated quinolone resistance Qnr determinants in one hospital in France. J Antimicrob Chemother. 2009 Sep;64(3):653-4. [PubMed] [CrossRef]
23. Shibl AM, Al-Agamy MH, Khubnani H, Senok AC, Tawfik AF, Livermoree DM. High prevalence of acquired quinolone-resistance genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 β-lactamase. Diagn Microbiol Infect Dis. 2012 Aug;73(4):350–353. [PubMed] [CrossRef]
24. Wu JJ, Ko WC, Tsai SH, Yan JJ. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother. 2007 Apr;51(4):1223-7. [PubMed] [CrossRef]
25. Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015. Braz J Infect Dis. 2017 May-Jun;21(3):343-8. [PubMed] [CrossRef]
26. Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013-2015. J Med Microbiol. 2017 Jan;66(1):61-9. [PubMed] [CrossRef]
27. Lee CC, Lee NY, Yan JJ, Lee HC, Chen PL, Chang CM, et al. Bacteremia due to extended-spectrum-β-lactamase-produsing Enterobacter cloacae: role of carbapenem therapy. Antimicrob Agents Chemother. 2010 Sep;54(9):3551-6. [PubMed] [CrossRef]
28. Qureshi ZA, Paterson DL, Pakstis DL, Adams-Haduch JM, Sandkovsky G, Sordillo E, et al. Risk factors and outcome of extended-spectrum-β-lactamase-produsing Enterobacter cloacae bloodstream infections. Int J Antimicrob Agents. 2011 Jan;37(1):26-32. [PubMed] [CrossRef].

Received: 29 August 2017
Published online: 18 December 2017

back to Online Journal