back to 2012, vol. 18, b. 2
Journal of IMAB - Annual Proceeding (Scientific Papers)
Publisher: Peytchinski, Gospodin Iliev
ISSN: 1312 773X (Online)
Issue: 2012, vol. 18, book 2
Subject Collection: Oral and Dental Medicine
Pages: 200-210
DOI: 10.5272/jimab.2012182.200
Published online: 16 May 2012

J of IMAB 2012; 18(2):200-210
Rossitza Kabaktchieva1, Denitsa Momekova2, Georgi Momekov3, Natalia Gateva1
1) Department of Pediatric Dentistry, Faculty of Dental Medicine,
2) Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy,
3) Laboratory of Experimental Chemotherapy, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy,
Medical University - Sofia, Bulgaria.

Introduction:Despite the eight decades of widespread clinical use of formocresol growing evidence from both experimental and clinical studies clearly indicates that formaldehyde is leaking out during pulpotomy and may participate in the development of non-target tissue damage of local and systemic character. Special attention has been paid to pulp-capping materials and especially mineral trioxide aggregate (MTA) as probable alternative of formocresol in vital pulpotomy in primary teeth, in line with its excellent biocompatibility and pro-dentinogenic properties. The overwhelming evidence that MTA is superior in terms of biological compatibilityand clinical success as compared to formocresol has conditioned the dramatic shift to MTA in routine pulpotomies.
Objective: The aim of this study was to assess the biocompatibility of resorcinol/formalin (RF) pulpotomy preparation in comparison to mineral trioxide aggregate (MTA) and calcium hydroxide cement (CHC).
Methods: Cell survival was assessed by the MTT-assay (after 48, 72 or 144 h) in five cell lines, namely: HD-MY-Z, HEK-293, SH-SY-5Y, Neuro-2A, SaOS-2.  In addition treatment-induced morphological perturbations and induction of necrosis and apoptosis were assessed in HEK-293.
Results: RF evoked strong, concentration-dependent cytotoxicity, which was evident even at significant dilution of the parent solution. In general the cytotoxicity of RF was not greatly influenced by the exposure period, especially at the higher concentrations under evaluation. In contrast the MTA extracts proved to be generally devoid of cytotoxic effects. MTA treatment actually increased the viability of SaOS-2 osteosarcoma cells, which could be attributed to the presence of calcium ions in the MTA-eluate which in turn stimulates the proliferation of this cell line. The CH cement extracts showed marginal cytotoxicity which was far less pronounced than that of RF and slightly superior compared to MTA.
Conclusions: In contrast to RF that exerted prominent cytotoxicity, MTA and CHC were biocompatible, with no evidence for decreased mitochondrial dehydrogenase activity, morphological changes in monolayer integrity or induction of apoptosis and/or necrosis. This contribution is the first systematic in vitro evaluation of the cytotoxicity of resorcinol-formalin vs. viable pulpotomy agents. It gives further evidence for the safety advantages of viable pulp therapy products CHC and especially MTA as compared to the RF preparation, routinely used in Bulgaria for decades.

Key words: pulpotomy, formaldehyde, resorcinol, MTA, biocompatibility, calcium hydroxide, cytotoxicity, MTT-assay, apoptosis, necrosis.

- Download FULL TEXT /PDF 805 KB/
Please cite this article as: Kabaktchieva R, Momekova D, Momekov G, Gateva N. Comparative cytotoxicity evaluation of medicines used for pulptherapy of primary teeth. J of IMAB. 2012; 18(2):200-210. doi: 10.5272/jimab.2012182.200

1. Milnes AR. Is formocresol obsolete? A fresh look at the evidence concerning safety issues. Pediatr Dent. 2008 May-Jun;30(3):237-46. [PubMed]
2 Fuks AB, Papagiannoulis L. Pulpotomy in primary teeth: review of the literature according to standardized criteria. Eur Arch Paediatr Dent. 2006 Jun;7(2):64-71; discussion 2. [PubMed]
3. Fuks AB. Current concepts in vital primary pulp therapy. Eur J Paediatr Dent. 2002 Sep;3(3):115-20. [PubMed]
4. Fuks AB. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent. 2008 May-Jun;30(3):211-9. [PubMed]
5. Vutov M, et al. Pediatric dentistry. Sofia: MG. 1989. (In Bulgarian)
6. Maslinkov D, et al. Guidance on practical exercises in pediatric dentistry. : MG. 1989. (In Bulgarian)
7. Gateva N, Kabaktchieva R. Anatomical characteristics of primary teeth with significance for taking inflammatory diseases of the pulpae. Diagnostics of the inflammatory diseases in primary teeth, review,Zabolekarski pregled, Sofia,vol.,88,2006,2,121-127  (in Bulgarian)
8. Gateva N, Kabaktchieva R. Treatment of diseases of dental pulp in primary teeth. Pulpotomy in the primary dentition.Part II, Zabolekarski pregled, Sofia,vol.89, 2007, 3, 208- 217 (in Bulgarian)
9. Ribeiro DA. Do endodontic compounds induce genetic damage? A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Feb;105(2):251-6. [PubMed] [CrossRef]
10. Waterhouse PJ. “New age” pulp therapy: personal thoughts on a hot debate. Pediatr Dent. 2008 May-Jun;30(3):247-52. [PubMed]
11. Cheong C, Wong G, Law MKT, King NM. Is formocresol still safe for use in pediatric dentistry? (Part I). Dental Asia. 2008 Jul/Aug;2008:19-23.
12. Ribeiro DA, Marques ME, Salvadori DM. Antimicrobial endodontic compounds do not modulate alkylation-induced genotoxicity and oxidative stress in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Aug;102(2):e32-6.[PubMed] [CrossRef]
13. Block R. Are you still using formocresol? An update. J Tenn Dent Assoc. 2009 Fall;89(4):14-7. [PubMed]
14. Myers DR, Shoaf HK, Dirksen TR, Pashley DH, Whitford GM, Reynolds KE. Distribution of 14C formaldehyde after pulpotomy with formocresol. J Am Dent Assoc 1978 May;96:805–13. [PubMed]
15. Feigal RJ, Messer HH. A critical look at glutaraldehyde. Pediatr Dent. 1990 Apr-May;12(2):69-71. [PubMed]
16. Hill SD, Berry CW, Seale NS, Kaga M. Comparison of antimicrobial and cytotoxic effects of glutaraldehyde and formocresol. Oral Surg Oral Med Oral Pathol. 1991 Jan;71(1):89-95. [PubMed]
17. Jeng HW, Feigal RJ, Messer HH. Comparison of the cytotoxicity of formocresol, formaldehyde, cresol, and glutaraldehyde using human pulp fibroblast cultures. Pediatr Dent. 1987 Dec;9(4):295-300. [PubMed]
18. De Menezes JV, Takamori ER, Bijella MF, Granjeiro JM. In vitro toxicity of MTA compared with other primary teeth pulpotomy agents. J Clin Pediatr Dent. 2009 Spring;33(3):217-21. [PubMed]
19. Gahyva SM, Siqueira JF Jr. Direct genotoxicity and mutagenicity of endodontic substances and materials as evaluated by two prokaryotic test systems. J Appl Oral Sci. 2005 Dec;13(4):387-92. [PubMed] [CrossRef]
20. Hagiwara M, Watanabe E, Barrett JC, Tsutsui T. Assessment of genotoxicity of 14 chemical agents used in dental practice: ability to induce chromosome aberrations in Syrian hamster embryo cells. Mutat Res. 2006 Feb 28;603(2):111-20. [PubMed] [CrossRef]
21. Ozaki T. Cytotoxicity of formocresol on cultured mammalian cells. Shigaku. 1988 Feb;75(6):1027-38. [PubMed]
22. Ribeiro DA, Scolastici C, De Lima PL, Marques ME, Salvadori DM. Genotoxicity of antimicrobial endodontic compounds by single cell gel (comet) assay in Chinese hamster ovary (CHO) cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005 May;99(5):637-40. [PubMed] {CrossRef]
23. Wang XL, Song M, Lou JN, Niu XY. The study of cytotoxicity of different intracanal medications and cell rehabilitation on human periodontal ligament fibroblasts. Shanghai Kou Qiang Yi Xue. 2007 Oct;16(5):512-9. [PubMed]
24. Holan G, Eidelman E, Fuks AB. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent. 2005 Mar-Apr;27(2):129-36. [PubMed]
25. Huang TH, Yang CC, Ding SJ, Yeng M, Kao CT, Chou MY. Inflammatory cytokines reaction elicited by root-end filling materials. J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):123-8. [PubMed] [CrossRef]
26. Cardoso ML, Todaro JS, Aguirre MV, Juaristi JA, Brandan NC. Morphological and biochemical changes during formocresol induced cell death in murine peritoneal macrophages: apoptotic and necrotic features. Cell Biol Toxicol. 2010 Oct;26(5):445–55. [PubMed] [CrossRef]
27. Rolling I, Thylstrup A. A 3-year follow-up study of pulpotomized primary molars treated with the formocresol technique. Scand J Dent Res. 1975 Mar;83(2):47–53. [PubMed]
28. Ferreira DC, Brito DG, Cavalcanti BN. Cytokine production from human primary teeth pulp fibroblasts stimulated by different pulpotomy agents. J Dent Child (Chic). 2009 Sep-Dec;76(3):194-8. [PubMed]
29. Zarzar PA, Rosenblatt A, Takahashi CS, Takeuchi PL, Costa-Junior LA. Formocresol mutagenicity following primary tooth pulp therapy: an in-vivo study. J Dent. 2003;31:479–85. [PubMed] [CrossRef]
30. Swettman SC, Martindale ED: The Complete Drug Reference, 36th Ed. London: Pharmaceutical Press. 2009.
31. Haney KL. Current trends in primary tooth pulp therapy. J Okla Dent Assoc. 2007 Oct;99(2):28-37; quiz 8. [PubMed]
32. Ng FK, Messer LB. Mineral trioxide aggregate as a pulpotomy medicament: a narrative review. Eur Arch Paediatr Dent. 2008 Mar;9(1):4-11. [PubMed]
33. Naik S, Hegde AH. Mineral trioxide aggregate as a pulpotomy agent in primary molars: an in vivo study. J Indian Soc Pedod Prev Dent. 2005 Mar;23(1):13-6. [PubMed] [CrossRef]
34. Gohring KS, Lehnert B, Zehnder M. [Indications for use of MTA, a review. Part 1: Chemical, physical and biological properties of MTA]. [Article in French, German] Schweiz Monatsschr Zahnmed. 2004;114(2):143-53. [PubMed]
35. Innes N. Better outcomes in pulpotomies on primary molars with MTA. Evid Based Dent. 2007;8(1):11-2. [PubMed] [CrossRef]
36. Kabaktchieva R, Gateva N. Vital pulpotomy in primary teeth with mineral trioxide aggregate (MTA). J of IMAB. 2009;15(2):102-108. [CrossRef]
37. Huang TH, Ding SJ, Hsu TC, Kao CT. Effects of mineral trioxide aggregate (MTA) extracts on mitogen-activated protein kinase activity in human osteosarcoma cell line (U2OS). Biomaterials. 2003 Oct;24(22):3909-13. [PubMed] [CrossRef]
38. Karimjee CK, Koka S, Rallis DM, Gound TG. Cellular toxicity of mineral trioxide aggregate mixed with an alternative delivery vehicle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Oct;102(4):e115-20. [PubMed] [CrossRef]
39. Ribeiro DA, Duarte MA, Matsumoto MA, Marques ME, Salvadori DM. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod. 2005 Aug;31(8):605-7. [PubMed]
40. Ribeiro DA, Matsumoto MA, Duarte MA, Marques ME, Salvadori DM. Ex vivo biocompatibility tests of regular and white forms of mineral trioxide aggregate. Int Endod J. 2006 Jan;39(1):26-30. [PubMed] [CrossRef]
41. Ribeiro DA, Matsumoto MA, Duarte MA, Marques ME, Salvadori DM. In vitro biocompatibility tests of two commercial types of mineral trioxide aggregate. Braz Oral Res. 2005 Jul-Sep;19(3):183-7. [PubMed] [CrossRef]
42. Ribeiro DA, Sugui MM, Matsumoto MA, Duarte MA, Marques ME, Salvadori DM. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Feb;101(2):258-61. [PubMed] [CrossRef]
43. Tani-Ishii N, Hamada N, Watanabe K, Tujimoto Y, Teranaka T, Umemoto T. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod. 2007 Jul;33(7):836-9. [PubMed] [CrossRef]
44. Vajrabhaya LO, Korsuwannawong S, Jantarat J, Korre S. Biocompatibility of furcal perforation repair material using cell culture technique: Ketac Molar versus ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Dec;102(6):e48-50. [PubMed] [CrossRef]
45. Moretti AB, Sakai VT, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J. 2008 Jul;41(7):547-55. [PubMed] [CrossRef]
46. Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of endodontic materials. J Endod. 1998 Feb;24(2):91-6. [PubMed] [CrossRef]
47. Salako N, Joseph B, Ritwik P, Salonen J, John P, Junaid TA. Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dent Traumatol. 2003 Dec;19(6):314-20. [PubMed] [CrossRef]
48. Souza NJ, Justo GZ, Oliveira CR, Haun M, Bincoletto C. Cytotoxicity of materials used in perforation repair tested using the V79 fibroblast cell line and the granulocyte-macrophage progenitor cells. Int Endod J. 2006 Jan;39(1):40-7. [PubMed] [CrossRef]
49. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod. 1995 Oct;21(10):489-92. [PubMed]
50. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod. 2009 Oct;35(10):1387-90. [PubMed] [CrossRef]
51. Gorduysus M, Avcu N, Gorduysus O, Pekel A, Baran Y, Avcu F, et al. Cytotoxic effects of four different endodontic materials in human periodontal ligament fibroblasts. J Endod. 2007 Dec;33(12):1450-4. [PubMed] [CrossRef]
52. Hernandez EP, Botero TM, Mantellini MG, McDonald NJ, Nor JE. Effect of ProRoot MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int Endod J. 2005 Feb;38(2):137-43. [PubMed] [CrossRef]
53. Agamy HA, Bakry NS, Mounir MM, Avery DR. Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent. 2004 Jul-Aug;26(4):302-9. [PubMed]
54. Caicedo R, Abbott PV, Alongi DJ, Alarcon MY. Clinical, radiographic and histological analysis of the effects of mineral trioxide aggregate used in direct pulp capping and pulpotomies of primary teeth. Aust Dent J. 2006 Dec;51(4):297-305. [PubMed] [CrossRef]
55. Ng FK, Messer LB. Mineral trioxide aggregate as a pulpotomy medicament: an evidence-based assessment. Eur Arch Paediatr Dent. 2008 Jun;9(2):58-73. [PubMed]
56. Noorollahian H. Comparison of mineral trioxide aggregate and formocresol as pulp medicaments for pulpotomies in primary molars. Br Dent J. 2008 Jun 14;204(11):E20. [PubMed] [CrossRef]
57. Saltzman B, Sigal M, Clokie C, Rukavina J, Titley K, Kulkarni GV. Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: diode laser-mineral trioxide aggregate pulpotomy. Int J Paediatr Dent. 2005 Nov;15(6):437-47. [PubMed] [CrossRef]
58. Sonmez D, Sari S, Cetinbas T. A Comparison of four pulpotomy techniques in primary molars: a long-term follow-up. J Endod. 2008 Aug;34(8):950-5. [PubMed] [CrossRef]
59. Aeinehchi M, Dadvand S, Fayazi S, Bayat-Movahed S. Randomized controlled trial of mineral trioxide aggregate and formocresol for pulpotomy in primary molar teeth. Int Endod J. 2007 Apr;40(4):261-7. [PubMed] [CrossRef]
60. Eidelman E, Holan G, Fuks AB. Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent. 2001 Jan-Feb;23(1):15-8. [PubMed]
61. Farsi N, Alamoudi N, Balto K, Mushayt A. Success of mineral trioxide aggregate in pulpotomized primary molars. J Clin Pediatr Dent. 2005 Summer;29(4):307-11. [PubMed]
62. Maroto M, Barberia E, Planells P, Garcia Godoy F. Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent. 2005 Jun;18(3):151-4. [PubMed]
63. Peng L, Ye L, Tan H, Zhou X. Evaluation of the formocresol versus mineral trioxide aggregate primary molar pulpotomy: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Dec;102(6):e40-4. [PubMed]
64. Subramaniam P, Konde S, Mathew S, Sugnani S. Mineral trioxide aggregate as pulp capping agent for primary teeth pulpotomy: 2 year follow up study. J Clin Pediatr Dent. 2009 Summer;33(4):311-4. [PubMed]
65. Segura JJ, Jimenez-Rubio A, Calvo JR. Effects of formocresol alone vs. formocresol with eugenol on macrophage adhesion to plastic surfaces. Pediatr Dent. 1998 May-Jun;20(3):177-80. [PubMed]
66. Konstantinov SM, Eibl H, Berger MR. BCR-ABL influences the antileukaemic efficacy of alkylphosphocholines. Br J Haematol. 1999 Nov;107(2):365-80. [PubMed] [CrossRef]
67. Newby CS, Barr RM, Greaves MW, Mallet AI. Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate. J Invest Dermatol. 2000 Aug;115(2):292-8. [PubMed] [CrossRef]
68. Passi S, Picardo M, Nazzaro-Porro M. Comparative cytotoxicity of phenols in vitro. Biochem J. 1987 Jul 15;245(2):537-42. [PubMed]
69. Skowron J, Zapor L. Cytotoxicity of resorcinol under short- and long-term exposure in vitro. Int J Occup Saf Ergon. 2004;10(2):147-56. [PubMed]
70. Zapor L. Toxicity of some phenolic derivatives-in vitro studies. Int J Occup Saf Ergon. 2004;10(4):319-31. [PubMed]
71. De Deus G, Ximenes R, Gurgel-Filho ED, Plotkowski MC, Coutinho-Filho T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J. 2005 Sep;38(9):604-9. [PubMed] [CrossRef]
72. Estrela C, Bammann LL, Estrela CR, Silva RS, Pecora JD. Antimicrobial and chemical study of MTA, portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dental J 2000;11:3–9. [PubMed]
73. Saidon J, He J, Zhu Q, Safavi K, Spangberg LS. Cell and tissue reactions to mineral trioxide aggregate and Portland Cement. Oral Surg Oral Med Oral Pathol Radiol Endodont. 2003;95:483–9. [PubMed] [CrossRef]
74. Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008 Nov;24(11):1486-94. [PubMed] [CrossRef]
75. Rowe RC, Sheskey PJ, Quinn ME, eds. Handbook of Pharmaceutical Excipients 6th Edition. London. Chicago: Pharmaceutical Press 2009; p. 185.
76. Camargo SE, Camargo CH, Hiller KA, Rode SM, Schweikl H, Schmalz G. Cytotoxicity and genotoxicity of pulp capping materials in two cell lines. Int Endod J. 2009 Mar;42(3):227-37. [PubMed] [CrossRef]
77. Miranda RB, Fidel SR, Boller MA. L929 cell response to root perforation repair cements: an in vitro cytotoxicity assay. Braz Dent J. 2009;20(1):22-6. [PubMed] [CrossRef]
78. Ding SJ, Kao CT, Chen CL, Shie MY, Huang TH. Evaluation of human osteosarcoma cell line genotoxicity effects of mineral trixoide aggregate and calcium silicate cements. J Endod. 2010 Jul;36(7):1158-62. [PubMed] [CrossRef]
79. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. . Am J Pathol 1995. 1995 Jan;146(1):3-15. [PubMed]
80. Marsden VS, Strassen A. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Ann Rev Immunol. 2003; 21:71–105. [PubMed] [CrossRef]

Accepted for publication: 14 February 2012
Issue published online: 16 May 2012

back to Online Journal